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 INTRODUCTION AND BACKGROUND 

Transformation of the earth surface has increased over time, with impacts shifting from local to 

global scales, óaltering the fundamental flows of chemical and energy that sustain life on the only 

inhabited planet we know.ô (Kates et al. 1990) Land disturbance due to human activity impacts a 

range of earth system functions, including climate regulation, hydrologic function, biodiversity 

richness, and other services.  For example, land use change accounts for 23% of total 

anthropogenic forcing of climate warming (IPCC 2019). Direct human action in the form of land 

use change has accounted for roughly two-thirds of all observed land change over the last 30+ 

years (Song et al. 2018).  Deforestation, agricultural intensification, urbanization and other 

dynamics reveal an increasing appropriation of natural lands for economic use and the increasing 

intensification of existing land uses (Foley et al. 2005).  Considerable international policy effort 

has focused on slowing tropical deforestation in an attempt to reduce carbon emissions and limit 

damage to forest co-benefits such as the maintenance of terrestrial biodiversity, largely with little 

impact to date.  Monitoring land change is a prerequisite to measuring its impacts, both in the 

policy and scientific domains.   

 

Climate change itself is also a driver modifying land cover and land use.  Tree lines are 

changing, mortality events increasing, droughts intensifying.  Such land changes over time may 

become a larger fraction of the overall dynamic compared to other proximate drivers of 

disturbance, including tipping points resulting in large scale collapse of ecosystems. Lenton et al. 

(2019) state that ñClimate change and other human activities risk triggering biosphere tipping 

points across a range of ecosystems and scalesò and that ñResearchers need to improve their 

understanding of these observed changes in major ecosystemséò For both direct land use 

change and more distal climate-driven land change, data on land disturbance data can offer 

invaluable observational data and insights in support of scientific inquiries concerning global 

environmental change. 

 

Disturbance is defined as any event that occurs outside the range of natural variability 

(Mildrexler et al. 2009) and may be due to human-induced or natural causes.  Disturbance 

indicates an impact on land cover or land use that may result in a complete conversion or only a 

modification of the pre-existing condition.  Disturbances can be instantaneous or long-lived, 

limited in area or regional in scale.  Differentiating the limit of natural variability is a key 

requirement in assigning disturbance, as many ecosystems and associated land covers can be 

highly interannually variable, as are land uses.  Additionally, many land covers and land uses are 

defined by disturbance, such as fire regimes in boreal forests, or rotations in forestry land uses.   

 

Disturbance is often characterized in ecological terms as events that alter ecosystem extent, 

structure, communities, and other variables.  Deforestation, mining, fire, drought and other 

dynamics, whether human-induced or natural in cause, result in a reduction in vegetation cover 

with concomitant impacts on ecosystem function.  For this application, we focus on such 

dynamics and define disturbance as a loss of vegetation cover outside of near-term historical 

variability.  In this way, we modify the general definition of disturbance to being a cover change 

of more to less vegetation cover. The presented method and associated disturbance algorithm is 

applied in near-real time as new imagery are available, delivering low latency results to facilitate 

land management decision-making.  Near-real time óalertsô are mapped per HLS tile and made 

https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
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available to users.  Annual summaries of alerts are then generated, facilitating downstream 

science through the production of synoptic annual records of global land disturbance. 

 

The potential uses of vegetation disturbance alerts at medium spatial resolution (10-30m from 

globally acquired, publicly available sensing systems such as Landsat and Sentinel 2) range from 

enforcement to management applications.  Monitoring road building, logging, forest clearing for 

agriculture and other dynamics can have added value if reported in near-real time. The DETER 

alerts of Brazil were critical to increasing the capacities of law enforcement and land 

management agencies in reducing illegal deforestation in the Brazilian Amazon (Nepstad et al. 

2014). The deployment of such a system pan-tropically by Global Forest Watch through the 

University of Marylandôs Global Land Analysis and Discovery (GLAD) lab, has offered such 

possibilities to other countries.  Studies have showed GLAD alerts to have been used to reduce 

deforestation in community forests in Peru and Central Africa (Slough et al. 2021; Moffette et al. 

2021).  Here, we advance this approach by applying it at global scale with a continuous measure, 

characterizing generic vegetation loss instead of only forests, and employing the highest cadence 

medium spatial resolution data set available, in the form of Harmonized Landsat 8 and 9 and 

Sentinel-2A and 2B data (HLS), as the input.  The HLS tiling system is shown in Figure 1.  The 

integration of both medium spatial resolution systems greatly enhanced the temporal resolution 

of these data, enhancing alert capabilities.   

 

 

 

Figure 1.  The global map of tile IDs for the HLS products (same as original Sentinel-2 tiling system). 
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 ALGORITHM DESCRIPTION 

2.1 Scientific Theory 

Operational disturbance alert systems can be signal or land cover theme-based.  Signal-based 

systems use a radiometric measure, such as greenness or brightness temperature, as the primary 

input to the alert system, delineating change outside normal variation of these bio-geophysical 

variables.  By comparison, theme-based alerts characterize a specific land cover change dynamic 

over a time series, such as forest cover loss, i.e. the removal of tree cover, or flooding, i.e. an 

increase in the expanse of surface water beyond the norm.   As such, land cover theme-based 

alert systems provide a more intuitive physical meaning and a resulting ability to map and 

validate area estimates more easily than bio-geophysical measures.   

 

Fractional vegetative cover is a theme-based measure and the basis of the OPERA DIST 

algorithm.  Fractional cover estimations from satellite data have a long history, employing a host 

of algorithms, from simple linear endmember mixture models (DeFries et al. 2000; Adams et al. 
1995; Settle and Drake, 1993), multiple endmember mixture models (Roberts et al. 1998), 

empirical modeling (DeFries et al. 1997; Zhu and Evans, 1994), and distribution-free machine 

learning methods  (Hansen et al. 2002).   The advantages of continuous dependent variables 

such as percent tree or vegetation cover include improved sensitivity to change compared to 

categorical labels, greater flexibility for users to adjust definitions, and more realistic depictions 

of ecotones.  

 

Operational alerts of land change have been employed in a variety of modes, ranging from illegal 

deforestation monitoring in Brazil with the Real-Time System for Detection of Deforestation 

(DETER) (Shimabukuro et al. 2013), to active fire monitoring with the NASAôs Fire Information 

for Resource Management System (FIRMS) (Davies et al. 2009) to food security with the 

Famine Early Warning System (FEWS) of USAID  (Ross et al. 2009).  Newer products include 

the use of medium spatial resolution data, for example Global Forest Watchôs deforestation alerts 

(Hansen et al. 2016) made from Landsat and Sentinel-2 data.  To advance this capability, we will 

implement a global low latency alert, DIST_ALERT, and an annual summary, DIST_ANN, 

product suite using NASAôs Harmonized Landsat 8 and 9 and Sentinel-2A and 2B data (HLS) 

(Claverie et al. 2018) as inputs.  The combined capability of these Earth observing systems 

results in a 2-4 day repeat visit cadence globally (Li and Roy, 2017), facilitating the application 

of near-real time disturbance mapping.   

 

Vegetation fraction is a suitable variable for monitoring global land change.  We have developed 

global algorithms for mapping per pixel percent vegetation cover using MODIS and Landsat data 

(Carroll et al. 2010; Hansen et al. 2014; Ying et al. 2017).  Results with Landsat demonstrate the 

utility of the measure in mapping the dynamic of vegetation loss and employing the maps to 

sample-based and econometric methods to estimate land use outcomes/drivers and apply the 

measure as a leading economic indicator, respectively (Ying et al., 2017; Ying et al., 2019).  

Vegetation loss as a generic dynamic can inform specific downstream applications from local to 

global scales and we will apply percent vegetation to HLS time-series imagery (Claverie et al. 

2018) in mapping land disturbance.  

 

https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
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2.2 Assumptions 

The first assumption in monitoring land disturbance, as we have defined it, concerns 

disturbances that involve vegetation loss.  In terms of global environmental change, vegetation 

loss is a key indicator, whether the dynamic is deforestation, desertification, overgrazing, or fire.  

However, a limited number of disturbance dynamics do not involve vegetation loss, for example 

redevelopment of a commercial parcel, or lava flow superposed on old lava fields.  An open 

question is the proportion of disturbance, as defined by generic surficial change events, that is 

omitted when targeting vegetation loss.  It is the assumption that the vast majority of land 

disturbance relevant to policy, management and science applications will be observable using 

vegetation cover as the indicator variable.  To confirm this assumption, we will add a spectral 

distance measure to delineate generic changes outside of the vegetation cover loss theme. 

Another assumption concerns the ability of optical time-series data to discriminate relevant 

vegetation loss events accurately and in a timely fashion.  Large conversion events, such as 

deforestation, have been shown to be reliably characterized (Hansen et al. 2013), while 

modification, or degradation of land cover types, has more mixed results.  Conversions represent 

a high contrast, typically long-lived spectral change.  Modifications represent low contrast, often 

ephemeral spectral change.  The manner in which we plan to add signal for detecting 

modifications, in effect to improve contrast, is to exploit the density of the HLS time-series.  

Repeated alert detections, even if low in contrast individually, can in concert enable accurate 

assignment of low intensity land disturbance.  As a safeguard, our product specification and 

definition of disturbance is for 50% or greater vegetative cover loss events, or more suited for 

conversion than modification.   

https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
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 VEGETATION FRACTION ALGORITHM  

We employ a machine learning technique to characterize vegetation fraction.  Our model relies 

on the following assumptions for successful estimation:  

1) Consistent radiometric characterization of input imagery.  The HLS time-series data 

feature state of the practice pre-processing including surface reflectance estimation and 

bi-directional reflectance distribution function correction, resulting in a reliable, scalable 

set of independent variables for inputs into a machine learning algorithm.  

2) Accurate quality assessment flags in screening inputs.  The HLS data come with a quality 

assessment flag that must accurately screen unviable observations.  No quality 

assessment layer is perfect, but too many omission errors in terms of passing 

haze/cloud/smoke/shadow-impacted observations leads to errors in mapping land change. 

However, the unprecedented density of the HLS time-series mitigates against occasional 

errors in quality flags. 

Given consistent spectral inputs and quality assessment, a well-calibrated model is enabled.  We 

employ a regression tree (Breiman et al. 1984) model to characterize per pixel vegetation 

fraction. Regression trees are a nonlinear, distribution-free algorithm that is highly suited for 

handling the complexity of global spectral land cover signatures.  Our model is an indicator 

product, building on Landsat-based vegetation continuous field maps (Hansen et al. 2014; Ying 

et al. 2017), which in turn were derived from data originally used to generate the MODIS 

Vegetation Continuous Fields (VCF) (Hansen et al. 2002, 2003).   

 

MODIS VCF percent vegetation maps capture peak annual cover conditions, and our training 

data for all subsequent applications have leveraged training data tied to high vegetation cover, 

including annual VCF time-series using Landsat data to map global vegetative cover loss (Ying 

et al. 2017).  Here, we applied the regression tree modeling approach from Ying et al. (2017) to 

2020 Landsat Analysis Ready Data (Potapov et al. 2020) (Figure 2), and reused the updated map 

as training inputs to contemporaneous HLS data.  We employed an annual peak greenness global 

metric (time-series data composited to represent peak vegetation conditions globally) from HLS 

inputs for the RED, NIR, SWIR 1.6 and SWIR 2.1 bandwidths (Claverie et al. 2018) as the 

independent variables.  Note, to avoid residual atmospheric contamination, we did not employ 

shorter wavelength blue and green bands as independent variables in estimating vegetation 

cover.  Both the percent vegetation cover and HLS bands representing peak greenness were 

nearest neighbor resampled to a 0.005 degree grid and used as inputs to the bagged regression 

tree model. Twenty-five percent of HLS tiles were systematically sampled and subsequent 

samples with replacement of 25% of pixels used in a bagging approach, where 11 trees were 

nearly perfectly fit and a 12th sample set-aside for model evaluation. The result is a turn-key 

model which can be applied to any HLS image using the aforementioned bands. The main 

assumption of the resulting model is that it covers all ranges of vegetative cover (Figure 2) and 

may be applied to off-peak greenness imagery.  Validation of the vegetation layer will test this 

assumption and may result in iteration of the model. Final and future iterations of the model will 

be made available to users for recreating per tile outputs and final derived products. 
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Figure 2. 2020 peak vegetation cover from Landsat Analysis Ready Data (Potapov et al. 
2020) used to train HLS data. 

 

Regression trees recursively divide a training data set by maximizing the decrease in entropy 

between resulting subsets, as quantified by the sum of squares of the resulting subsets.  Input 

spectral bands are interrogated and the reflectance value that best discriminates two subset 

populations as measured by maximally decreased variance is chosen.  Splitting the data 

continues until no further discrimination can be made or when a preset condition is met.  The 

regression tree takes the following form (Breiman et al. 1984; Venables and Ripley 1999) and is 

implemented in C++ code in our data processing system: 

 

 
where D is the deviance, an entropy measure, as measured by the corrected sum of squares for a 

split. Deviance is calculated from all j cases of y and the mean value of those cases, u.   

All input satellite data are analyzed across digital number values, and right and left splits are 

examined. The split that produces the greatest reduction in the residual sum of squares, or 

deviance, is used to divide the data, and the process begins again for the two newly created 

subsets. Figure 3 shows a spectral plot of the global land surface at peak greenness conditions in 

two-dimensional spectral spaces.  The model functions as a look-up table for the 4-band HLS 

input spectral space and each pixel in each image assigned a vegetation cover fraction.  While 

many cover types require a time-series for identification, whether forests or croplands, vegetation 

fraction can be mapped instantaneously, much like water.  As such, time-series of HLS 

observations in the form of vegetation cover can be used to monitoring land change. 
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Figure 3.  Example pairwise plots for HLS bandwidths of the global land surface under peak greenness conditions as 

depicted in HLS data from Nov. 2020 to Oct. 2021, where a) is RED vs. NIR, b) SWIR 1.6 vs. NIR, and c) SWIR 

1.6 vs. SWIR 2.1.  Gray-scale circles indicate mean vegetation cover per cover stratum (shown at top).  Subplots at 

top are for 10% increments of percent vegetation cover from main plots below. 

3.1 Assumptions 

As with any machine learning algorithm, its performance is only as good as its input data sets, 

both the imagery and training data.  We have shown in previous work that the vegetation fraction 

measure as estimated using regression trees is a reliable input to mapping vegetation loss at the 

global scale (Ying et al. 2017).  The assumption is that while absolute estimation of vegetation 

https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
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cover may be biased (validation will indicate the degree of bias), the relative magnitude of time-

series cover estimates is accurate and, thus, able to discriminate change. 
 

3.2 Algorithm Input Variables 

The DIST algorithm employs a vegetation cover indicator as the input variable.  Vegetation 

cover can be mapped per pixel, recording the natural phenological or managed land use dynamic 

of the land surface. Near-term historical variation can then be used as a reference for detecting 

anomalous vegetative cover estimates. Vegetation cover is defined as ñthe amount of skylight 

orthogonal to the surface that is intercepted by the cover trait of interestò (Carrol et al. 2010) and 

includes all plant life over land including both woody and herbaceous (i.e. non-woody) 

vegetation as with the MODIS Vegetation Continuous Field (VCF) product (Hansen et al. 2003, 

VCF ATBD). Vegetation disturbance is mapped when there is an indicated decrease in 

vegetation cover within an HLS pixel, formally defined to be 50% vegetation cover decrease 

when the scene is compared to the previous calendar years as in Ying et al. (2017), though the 

algorithm will report a continuous record of vegetation cover loss. The number of calendar years 

used as a reference will be two years due to initial HLS availability, but may change during 

algorithmic calibration. 

Applying the per scene vegetation cover model will result in a time-series of per pixel vegetation 

cover.  Figure 4 shows three dates of HLS-derived vegetation cover over the Bootleg Fire in 

Oregon, USA. The dates were chosen as they were cloud/smoke-free and outline the scale of the 

fire extent.  Figure 5 depicts a time-series of vegetation cover for a pixel at the western edge of 

the fire, illustrating the start of the fire for this pixel sometime after the morning of July 6. 

Disturbance, or vegetation loss, is quantified by the next cloud/smoke-free image on July 16.  In 

algorithm implementation, disturbances in vegetation cover will be identified by comparing each 

current HLS scene to a summary of cover estimates from previous years representing a lower 

bound of observed vegetation cover. The composite historical reference is derived from a small 

calendar window containing the date of the current HLS scene, with the exact length of the 

composite period to be determined during product development.  In this manner, we may account 

for intra-annual and seasonal variation in quantifying anomalously low vegetation cover 

conditions.   

Strongly seasonal environments may have periods where detection of land disturbance is 

precluded.  For example, low sun angles and winter conditions will lead to fewer observations 

and lower vegetation contrast when observed.  However, the vegetation cover model is sensitive 

to leaf-off non-photosynthetic woody cover in semi-deciduous and deciduous environments, 

meaning forests and woodlands will register a positive leaf-off vegetative cover. This outcome is 

due to the fact that dense leaf-off tree cover has a similar spectral signature to peak greenness 

transitional shrublands in semi-arid ecotones. Figure 6 illustrates leaf-on, leaf-off vegetation 

cover estimates as compared to a clearing event in northern Virginia, USA, revealing a degree of 

sensitivity to disturbance detection for either leaf-on or leaf-off conditions. 

 

https://impact.earthdata.nasa.gov/apt/documents/21/v1.0
https://link.springer.com/chapter/10.1007/978-1-4419-6749-7_32
https://journals.ametsoc.org/view/journals/eint/7/10/1087-3562_2003_007_0001_gptcaa_2.0.co_2.xml?tab_body=fulltext-display
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod29.pdf
https://www.sciencedirect.com/science/article/pii/S0034425717301244
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Figure 4.  HLS-derived vegetation cover for three dates in r-g-b color composite.  Red 
indicates vegetation loss after June 25, 2021.  The three dates were chosen as they 

were cloud-free and graphically capture fire extent. 

 






































